skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Logan A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To monitor electrical activity throughout the power grid and mitigate outages, sensors known as phasor measurement units can installed. Due to implementation costs, it is desirable to minimize the number of sensors deployed while ensuring that the grid can be effectively monitored. This optimization problem motivates the graph theoretic power dominating set problem. In this paper, we propose a method for computing minimum power dominating sets via a set cover IP formulation and a novel constraint generation procedure. The set cover problem's constraints correspond to neighborhoods of zero forcing forts; we study their structural properties and show they can be separated with delayed row generation. In addition, we offer several computation enhancements which be be applied to our methodology as well as existing methods. The proposed and existing methods are evaluated in several computational experiments. In many of the larger test instances considered, the proposed method exhibits an order of magnitude runtime performance improvement. 
    more » « less
  2. Abstract We present an integer programming model to compute the strong rainbow connection number,src(G), of any simple graphG. We introduce several enhancements to the proposed model, including a fast heuristic, and a variable elimination scheme. Moreover, we present a novel lower bound forsrc(G) which may be of independent research interest. We solve the integer program both directly and using an alternative method based on iterative lower bound improvement, the latter of which we show to be highly effective in practice. To our knowledge, these are the first computational methods for the strong rainbow connection problem. We demonstrate the efficacy of our methods by computing the strong rainbow connection numbers of graphs containing up to 379 vertices. 
    more » « less
  3. Abstract Positive semidefinite (PSD) zero forcing is a dynamic graph process in which an initial subset of vertices are colored and may cause additional vertices to become colored through a set of color changing rules. Subsets which cause all other vertices to become colored are called PSD zero forcing sets; the PSD zero forcing number of a graph is the minimum cardinality attained by its PSD zero forcing sets. The PSD zero forcing number is of particular interest as it bounds solutions for the minimum rank and PSD min rank problems, both popular in linear algebra. This paper introduces blocking sets for PSD zero forcing sets which are used to formulate the first integer program (IP) for computing PSD zero forcing numbers of general graphs. It is shown that facets of the feasible region of this IP's linear relaxation correspond to zero forcing forts which induce connected subgraphs, but that identifying min cardinality connected forts is‐hard in general. Auxiliary IPs used to find these blocking sets are also given, enabling the master IP to be solved via constraint generation. Experiments comparing the proposed methods and existing algorithms are provided demonstrating improved runtime performance, particularly so in dense and sparse graphs. 
    more » « less